Dialogue Act Tagging with Transformation-Based Learning
نویسندگان
چکیده
For the task of recognizing dialogue acts, we are applying the Transformation-Based Learning (TBL) machine learning algorithm. To circumvent a sparse data problem, we extract values of well-motivated features of utterances, such as speaker direction, punctuation marks, and a new feature, called dialogue act cues, which we find to be more effective than cue phrases and word n-grams in practice. We present strategies for constructing a set of dialogue act cues automatically by minimizing the entropy of the distribution of dialogue acts in a training corpus, filtering out irrelevant dialogue act cues, and clustering semantically-related words. In addition, to address limitations of TBL, we introduce a Monte Carlo strategy for training efficiently and a committee method for computing confidence measures. These ideas are combined in our working implementation, which labels held-out data as accurately as any other reported system for the dialogue act tagging task.
منابع مشابه
Development of a Machine Learnable Discourse Tagging Tool
We have developed a discourse level tagging tool for spoken dialogue corpus using machine learning methods. As discourse level information, we focused on dialogue act, relevance and discourse segment. In dialogue act tagging, we have implemented a transformation-based learning procedure and resulted in 70% accuracy in open test. In relevance and discourse segment tagging, we have implemented a ...
متن کاملPosting Act Tagging Using Transformation-Based Learning
In this article we present the application of transformation-based learning (TBL) [1] to the task of assigning tags to postings in online chat conversations. We define a list of posting tags that have proven useful in chat-conversation analysis. We describe the templates used for posting act tagging in the context of template selection. We extend traditional approaches used in part-of-speech ta...
متن کاملA semantic tagging tool for spoken dialogue corpus
In this paper, we report our semantic tagging tool for spoken dialogue corpus. This tagging tool can acquire analysis rules using Transformation-based Learning (TBL) from small scale training corpus. It can learn dialogue act tagging rules and semantic frame tagging rules. The precisions are 72% in dialogue act tagging and 58% of semantic frame tagging in open test.
متن کاملAn Investigation of Transformation-Based Learning in Discourse
This paper presents results from the first attempt to apply Transformation-Based Learning to a discourse-level Natural Language Processing task. To address two limitations of the standard algorithm, we developed a Monte Carlo version of TransformationBased Learning to make the method tractable for a wider range of problems without degradation in accuracy, and we devised a committee method for a...
متن کاملDiscourse Learning: Dialogue Act Tagging with Transformation-Based Learning
My central goal is to compute dialogue acts automatically. A dialogue act is a concise abstraction of a speaker's intention, such as SUGGEST and REQUEST. Recognizing dialogue acts is critical to understanding at the discourse level, and dialogue acts can also be useful for other applications, such as resolving ambiguity in speech recognition. But, often, a dialogue act cannot be directly inferr...
متن کامل